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Abstract

Text-conditioned style transfer is a promising area of re-
search that enables the generation of stylistic images from
natural language descriptions of desired styles. A com-
mon theme underlying existing methods that accomplish
this is, using CLIP-based embeddings to direct image edit-
ing through directional losses. Such losses enforce align-
ment by ensuring the direction from a source text to the tar-
get text should match the direction from the source image to
the stylized image. However, people often intuitively con-
nect and relate a style with other stylistic attributes, such as
associating “Starry Night by Van Gogh” with “blue hues”
or “swirly lines” and not with “pop art” or “monochrome
tones”. In this work, we introduce STYLREL, a frame-
work that exploits such natural style relationships that peo-
ple establish and propose a relational loss between style at-
tributes, target style text, and the generated stylized image.
Through comprehensive evaluations on global and local-
ized style transfer tasks, STYLREL demonstrates a nuanced
understanding of target style text and consistently outper-
forms existing state-of-the-art approaches, as evidenced by
both qualitative and quantitative metrics.

1. Introduction
Style Transfer [6, 10, 16, 23, 45] is a technique of applying
the style from one image to another image while retaining
the original content of the latter. The recent developments in
Large Language Models (LLMs) [4, 27, 40, 46] and Visual
Language Models (VLMs) [24, 35, 36, 39, 41] have paved
exciting new directions in the field of style transfer allowing
the expression of complex styles in the form of human in-
terpretable textual descriptions [8, 22, 34]. This takes away
the burden of obtaining specific stylized images and aims to
transfer the semantic style from only a textual description
to a content image by leveraging the representation capac-

*Equal contribution.
†Work done while at Adobe

(a) Directional Loss (b) Relational Loss 

Same Direction Same Relation with Style         Swirly

                         Blue Hues

Swirly

Pop Art
Charcoal

A photo

//

//

Content Image Stylised Image
Stylised Image

//

Target Style 
Text

Target Style 
Text

Starry Night by 
VanGogh Cubism

Style Set

=

==

=

= = Blue Hues

Starry Night by 
VanGogh

                         Blue Hues

Cartoon
Pop Art

Charcoal

Cubism

Style Space

Swirly

Minimalistic
Swirly

Figure 1. For the target style text ‘Starry Night by Van Gogh’,
(a) directional loss aligns the direction of content image to styl-
ized image with the direction of the text ‘a photo’ to target style
text, preserving directional consistency. For a refer-
ence style in the set of styles, for e.g. ‘Swirly’, (b) relational loss
ensures the relationship of stylised image with ‘Swirly’ is similar
to the relationship of target style text with ‘Swirly’, as depicted
by orange lines. In our work, we maintain this relational
consistency for the entire set of reference styles using our re-
lational loss. This is motivated by the intuition that if styles rep-
resented by target style text are similar to styles represented by
stylised image, then their relationships will be consistent.

ity of large-scale foundation models like CLIP [35].
Broadly, the recent text-based style transfer approaches are
optimized for a given prompt based on aligning the direc-
tions of the source text and target text to the direction of the
source image and stylized image respectively, in the embed-
ding space (e.g. CLIP) [9, 22, 34]. These approaches show
promise by generating semantically consistent and diverse
images from target textual descriptions.
However, in this work, we discuss an interesting yet cru-
cial nature of the style descriptions by drawing upon the
cognitive principles outlined by Gentner [11], Hofstadter
[12], Hofstadter and Sander [13] that highlights compara-
tive learning in understanding and differentiating concepts.
More specifically, as humans we understand a style by in-
tuitively connecting or relating it to the other styles from
our knowledge. To elaborate upon our intuition, consider



an example style description: “photo in Starry Night by
Van Gogh style” as illustrated in Fig 1, and we can expe-
rience how we implicitly interpret by associating “Starry
Night by Van Gogh style” it with the other styles like “blue
hues,” “stars,” and,“swirly lines,” and not with “pop art”
and “monochrome tones”. We thus posit that in addition
to matching directions, we can leverage these natural rela-
tionships between styles to improve text-conditioned style
transfer.
To that end, we propose STYLREL, a versatile and efficient
framework that enhances the existing text-based style trans-
fer approaches by introducing a relational loss term. Con-
cretely, first, we sample a set of well-known style templates
and encode them to form a “style tensor”. Next, we compute
similarities of “style tensor” with both the target style in-
struction text and generated stylized image and create text-
style and image-style “relation vectors” respectively as il-
lustrated in the Fig 2b. Finally, we compute the relational
loss as the mean squared error between the image relation
vector and the text relation vector averaged over multiple
image patches. We summarize our contributions as follows:
• In this work, we show that leveraging the relationship

between styles improves the effectiveness of text-based
style transfer. Hence, we propose a framework STYL-
REL, that incorporates a flexible relational loss (Sec 4.2).
The relation loss term consists of two key parts - a)
grounding the style descriptions in a well-defined style
vocabulary using a “style tensor”, and b) computing a “re-
lation vector” to describe the relationship of the stylized
image and text with the style tensor.

• We compare our technique against the state-of-the-art
text-based style transfer approaches (CLIPStyler [22],
Gen-Art [47]). Our analysis in Sec 5 shows that STYL-
REL outperforms all baselines both qualitatively and
quantitatively.

• We extend our application beyond global image styliza-
tion to the task of local style transfer and compare against
a state-of-the-art baseline (Text2LIVE [3]). For a deeper
analysis, we contribute a simple yet stronger baseline to
account for limitations in the existing prior art.

2. Related Work
Image Style Transfer. [10] introduced style transfer as
a pixel-level optimization problem that uses an image of
the reference style, and then jointly optimizes the style and
content losses. [17, 42] extended the formulation in [10]
by training a style-specific generative model using simi-
lar losses or adding additional perceptual losses. Adap-
tive Instance Normalization (AdaIn) [15] on the other hand,
proposed to apply the mean and standard deviation of the
style images to the normalized statistics of the content im-
ages. More recently and owing to the success of attention
mechanisms, several works have leveraged it to compute

image-style correlations. Style Attention Network [32] uti-
lized cross-attention, while Adaptive Attention Normaliza-
tion [25] explored an improved version of attention-based
style transfer by learning a spatial attention score from both
the shallow and deep features. In a different line of work,
[1, 28] benefitted with the use of neural flows and VAEs to
model style transfer respectively. We note that most of the
discussed works employ convolutional networks (CNNs),
and subsequently found the recent methods to extend the
use of transformers for the aforementioned problem. Style-
Former [44] proposes a transformer-based style composi-
tion module whereas [5] discusses the limitations of CNN-
localization for style transfer, and uses vision transformers
to incorporate the long-range dependencies in images.
Given the existing and the recent image style transfer meth-
ods, we emphasize their limitation to require a reference
style image and thus focus on the problem of text-based
style transfer in subsequent discussions.
Text-conditioned Style Transfer. This overlaps with the
broader areas of text-conditioned generation, editing, and
VLM that allow us to relate both image and text in a shared
embedding space. CLVA [7] introduced the new task of
language-driven artistic style transfer. However, they utilise
annotated styled images with text descriptions during train-
ing. The majority of the recent methods [3, 18, 22, 29, 47]
rely on the representational capability of CLIP [35] for
guiding the pre-trained generators to use text conditions.
StyleCLIP [34] proposed text-guided attribute manipula-
tion by exploring novel editing directions in the pre-trained
StyleGAN [19] latent space using CLIP. Moving forward,
StyleGAN-NADA [9] adapts pre-trained generators for
novel domains without requiring additional training im-
ages and with the text descriptions using CLIP supervision.
However, the pre-trained knowledge of generative models
poses a bottleneck in both these methods, and the edits are
either restricted within the trained domain of pre-trained
StyleGAN [19] or only work for attributes seen during the
training. CLIPStyler [22] alleviates this and employs global
as well as patch CLIP losses to transfer the source image
using target style description/text, regardless of their source
domains. Text2LIVE [3] extended this to perform edits in
a localized region, hence, localized text conditioned style
transfer. Further, CLIPStyler suffers from over-stylization
and content-mismatch problems, which Sem-CS [18] and
Generative Artisan (Gen-Art) [47] address. However, both
input pre-computed segmentation masks, which restricts
their application to human portraits/faces and other stan-
dard classes. Gen-Art requires portrait segmentation masks
from FCN-ResNet101[30], while Sem-CS from Deep Spec-
tral Segmentation[31]. By definition, each of the above
approaches works with a CLIP-based directional loss (see
Fig 1a), and we contrast this by augmenting their existing
loss functions with our intuitive yet simple relational loss
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Figure 2. (a) demonstrates the creation of the Style Tensor S. First, each style in the set of styles Tstyle is framed as a question like ‘Is the
style <STYLE>?’, which is then embedded in the CLIP space with the CLIP text encoder CT to create the Style Tensor S. (b) shows our
proposed STYLREL framework, which aligns the relationship of target text style (Ttar) and S, represented by text-relation vector (Trel)
with generated stylized image patches (Iout) and S represented by image relation vector (Iirel). The framework aligns the target style text
with the stylized image with the proposed relational loss LSTYLREL.

(see Fig 1b). In a different line of work, recent methods
DiffStyler [14], Stable Diffusion [37] use diffusion to per-
form text-conditioned image editing and stylization. How-
ever, we note that our current formulation of relational loss
assumes style understanding of the CLIP embedding space,
and an adaptation of this phenomenon to diffusion’s latent
representation is part of our future work.

3. Preliminaries of Text-conditioned Style
Transfer

Recent style transfer methods like StyleCLIP [34],
StyleGAN-NADA [9], CLIPstyler [22] primarily divide
their loss function into a CLIP-based directional loss, and
a content loss:

min
θf

[Ldir(θf , θC) + Lcontent(θf , θC)] (1)

where f is an image generator (e.g. U-Net [38]), θC are the
parameters of a frozen CLIP model, Ldir is the directional
loss, and Lcontent is the content loss. Next, we discuss each
loss term given in Eqn 1.
Directional Loss (Ldir). We first compute the unit vector
joining CLIP text embeddings of the placeholder textual de-
scription Tin of content image Iin (e.g. “a photo”), and the
target style text Ttar (e.g. “photo in Starry Night by Van
Gogh style.”), respectively. Likewise, we compute unit vec-
tor joining CLIP image embeddings of Iin and its desired
stylized output Iout = f(Iin), respectively. Let CI and CT

denote the clip image and text encoders, the direction vec-
tors are defined as:

Tdir =
CT (Ttar)− CT (Tin)

∥CT (Ttar)− CT (Tin)∥2

Idir =
CI(Iout)− CI(Iin)

∥CI(Iout)− CI(Iin)∥2
where CI and CT are CLIP image and text encoders respec-
tively.
The directional loss aligns the CLIP-space direction be-
tween the input-output text pairs (Tin, Ttar) with the input-
output image pairs (Iin, Iout). The final loss is given by:

Ldir = 1−Tdir · Idir (2)

where Tdir, Idir are the text direction and image direction
vectors respectively.
Content Loss (Lcontent). It is the mean-squared error be-
tween the features of content and output stylized images,
both extracted from the pre-trained VGG-19 networks [10].
Further, methods like [22, 47] also employ a total variation
regularization loss Ltv to handle the artifacts and ensure the
spatial consistency of the final image.

4. Methodology
In this section, we describe our proposed framework for
text-based style transfer, STYLREL, that goes beyond the
traditional directional losses (Eqn 2) and incorporates a
more intuitive method of associating styles with other stylis-
tic attributes and grounding these relationships in the gen-
erated stylized images. To achieve this we propose a rela-
tional loss by which aligns the target style text and the styl-
ized image with the well-known style attributes. First, we
compose a vocabulary of these well-known style attributes
with colors, tones, style arts (Sec 4.1). Next, we compute the
relationship vectors of these styles with the generated styl-
ized image and the target style text, and, finally, we match
these individual relationships to better align the output im-
age with the target style text, not just directionally but also



Figure 3. Qualitative comparison of LSTYLREL v/s CLIPStyler. CLIPStyler with our framework STYLREL (CLIPStyler + StylRel) is
better able to produce realistic textures that reflect the target style texts, and also preserves the content of the original image. Additional
results will be provided in the appendix.

relationally (Sec 4.2). In the following sections we discuss
each of these key components in detail.

4.1. Creating the Style Tensor

We begin by creating a set of well-known style attributes
consisting of art styles, colors, line strokes, and textures
(see Fig 2a). Each style is framed as a question like “Is
the style <STYLE>?” where each <STYLE> is one of the
style in the vocabulary. These questions are then encoded
into the CLIP embedding space to create the style tensor
S ∈ RN×512 where N is the number of styles and 512 is
the embedding size of CLIP. The style tensor is created as:

S = CT (Tstyle) ∈ RN×512 (3)

where CT is the CLIP text encoder and Tstyle is the list
of N preprocessed questions. The choice of our question is
substantiated in the ablation studies in Sec 5.4. We illustrate
this visually in Fig 2a. More details about the set of styles
are included in the Appendix.

This formulation of Style Tensor framed as a question
helps us to understand (i) how the target text description
(Ttar) is associated with each of these styles, and, (ii) how
the stylized image (Iout) is associated with each of these
styles. Next, we show how we leverage this formulation.

4.2. Relational Loss (LSTYLREL)

Text-Style Relation: We represent the relationship between
target style text with S as Trel and define it as the similarity
score of the target text with each style in S:

Trel = S ◦ (CT (Ttar))
⊺ (4)

where ◦ is Hadamard product, Trel ∈ RN×1 is the relation
vector, N is the number of styles in the style tensor.
Image-Style Relation: We represent the relationship be-
tween stylized image with S as Iirel. We compute this re-
lationship for every patch of the stylized image Iout. This
is inspired from CLIPStyler [22] which introduces a patch
level loss for a fine-grained style transfer which aligns indi-
vidual patches with the target style text. Similarly, for each
image patch aug(·) we encode it with clip image encoder
as CI(aug(I

i
out)), and then compute the similarities of each

patch with style relations in the form of the image relation
vector (Iirel) as follows:

Iirel = S ◦ (CI(aug(I
i
out)))

⊺ (5)

Relational Loss: Given the relation vectors for image and
text domains, we optimize f with LSTYLREL that aligns the



Figure 4. Comparison with baselines: StyleCLIP [34], Style-NADA [9], CLIPStyler[22], Gen-Art [47]. First column is the content image,
and the adjoining texts are style text description prompts. Best viewed in zoom and color.

relation vector of the image with the relation vector of the
text domain using the mean squared error averaged over all
image patches, and is given by:

LSTYLREL =
1

M

M∑
i=1

∥Iirel −Trel∥2 (6)

where M denotes the total number of patches. We illustrate
the proposed loss visually in Fig 2b.

5. Experiments and Results
5.1. Experimental Setup

Our proposed framework is simple and can be easily inte-
grated with existing text-conditioned style transfer methods,
requiring only a few additional lines of code. Note that our
STYLREL loss function is added to the existing set of losses
used by the baselines, and hence makes no changes to their
inputs or architecture.
Dataset and Metrics. We utilize the test dataset provided
in [22] and in total obtain 100 stylized outputs for compar-
ison. We employ SSIM (Structural Similarity Index Mea-
sure) [43], CLIP score [35], and PatchCLIP score for quan-
titative evaluation. SSIM measures image similarity be-
tween the stylized output and the content image, while CLIP
score estimates the association of the stylized output images
with the target style description. To capture more intrica-
cies, we also evaluate the CLIP score over randomly sam-
pled image patches and specify it as the PatchCLIP score.
For each of these metrics, a higher score signifies superior
performance.
Hyperparameters and Compute Details. We set the in-
put image resolution to 512 × 512, and use Adam opti-
mizer [20]. In the case of STYLREL, the number of patches

M is always kept as 64. Besides, the hyperparameters spe-
cific to baselines are set using their official implementations
and further elaborated in appendix. We run all of our ex-
periments using Pytorch v1.12 [33] on a single NVIDIA
GeForce RTX 3090 (24GB) GPU.

5.2. Comparison with baselines

Comparison with CLIPStyler (CS) [22]. In this experi-
ment, we add LSTYLREL to CLIPStyler which uses a patch-
wise directional loss (Lpatch), a global directional loss
(Ldir), a content loss (Lcontent) and a total variation loss
(Ltv):

LCS = λdLdir + λpLpatch + λcLcontent + λtvLtv (7)

The overall loss function is thus given as:

LCS+STYLREL = LCS + βLSTYLREL (8)

where β is the loss balancing parameter (here 1e-4). The
quantitative results are shown in Tab 1. We begin by report-
ing the effect of each of global Ldir and patch-wise Lpatch

on CLIPStyler. Across the experiments, we observe that
Lpatch has more influence on performance than Ldir, and
that adding our loss function consistently improves CS on
all the specified metrics.

The qualitative comparison of our approach on CLIP-
Styler (CS) is shown in Fig 3. We examine over multitude
of style descriptions and observe our approach is able to
preserve the original content of the images while faithfully
transferring the intended styles. On the other hand, artefacts
in CLIPStyler’s outputs are clearly evident, for example, in
(c) – first row, “Black and White”, the woman in the CS’s
stylized image is missing the original structure of the input



image. Moreover, the object boundaries get distorted in CS
outputs (second rows in (b), (c), first row in (d)). Also, we
report for some examples in (a) and (d) that CS’s outputs do
not reflect the style described by the target style texts.

Setting CLIP Score (↑) PatchCLIP Score (↑) SSIM (↑)
CS 23.82 22.95 0.3895

CS w/o Lpatch 19.73 19.99 0.4005
CS w/o Ldir 23.33 22.57 0.3886

CS + STYLREL 24.07 23.85 0.3913

Table 1. Quantitative comparison of STYLREL with CLIP-
Styler(CS) and its variants. We notice the addition of STYLREL

consistently improves CS on the standard metrics

Comparison with other baselines. In this experiment,
we compare against the existing text-guided manipulation
methods – (i). StyleCLIP [34], (ii). Style-NADA [34],
and an extension of CLIPStyler – (iii). Generative Arti-
san CLIPStyler (Gen-Art) [47]. Baselines (i, ii) are based
on CLIP and StyleGAN pre-trained on human faces, while
(iii) improves over CLIPStyler’s overstylization problem
which distorts human faces, by leveraging human segmen-
tation masks from FCN(ResNet-101)[30]. More specifi-
cally, Gen-Art operates over human selfies and portraits and
is a simple extension that uses the same loss function as
Eqn 7. Hence, we adopt a consistent setting and a human
example for the results in Fig 4.
Similar to [22], we found that StyleCLIP and Style-NADA
are restricted and inherently different in behavior to CLIP-
Styler for the current problem. They either fail to transfer
the style satisfactorily and/or change the face identity of the
source image. However, CLIPStyler and Gen-Art both per-
form decently while handling face styles, with Gen-Art be-
ing better (see Fig 4). Further, it can be observed that adding
our LSTYLREL to both CLIPStyler and Gen-Art considerably
improves their outputs. Note that we extend Gen-Art with
our approach in the same way as Eqn 8.

5.3. Text-conditioned Local Style Transfer

In this experiment, the text descriptions are used to trans-
fer the styles to a specific localized region of the image
rather than the entire image, e.g.“building on fire” instead
of “fire”. Thus, it deems a more challenging problem that
necessitates an accurate delineation of the region of interest.
Here, we first compare against the baseline Text2LIVE [2],
and then extend over its limitations to propose a simple yet
effective baseline, and further demonstrate the efficacy of
STYLREL on the aforementioned task.

Comparison with Text2LIVE (T2L). Given the source
content image Iin and target style text Ttar, Text2LIVE
(T2L) [2] consists of a generator that synthesizes the edit
layer = {α, C} where α is an opacity map which acts as a
segmentation mask to localize the region, and C is an image

which defines edits in that localized region.:

Io = αC + (1− α)Iin (9)

“boat in 
rainbow style”

“person in 
green crystal 
style”

“woman in fire 
style”

“flower in 
desert style”

Content Image Target Style text Alpha masks Text2LIVE Text2LIVE + StylRel

Figure 5. Qualitative comparison with Text2LIVE [2] on local
style transfer. Clearly, STYLREL allows to better preserve the
nuances of the target text style. Text2LIVE also produces alpha
masks (shown in 3rd column) which highlight the regions where
edits take place. The regions of interest corresponding to under-
lined text in target style texts are highlighted in red boxes.

For their supervision, they also compose the edit layer
with a green background(Igreen) to obtain Iscreen as:

Iscreen = αC + (1− α)Igreen (10)

Their objective function comprises of Lcomp – a combina-
tion of CLIP based cosine distance and directional loss to
ensure Io conforms to Ttar, Lscreen – a CLIP based super-
vision to learn the edit layer, Lstructure which preserves
content of Io w.r.t Iin, and Lreg which is a regularization
term:

LT2L = Lcomp + λgLscreen + λsLstructure + λrLreg (11)

where λg, λs, λr control the relative weights of the individ-
ual loss functions. In this case, we apply STYLREL on both
Iedit = {α, C}, Iscreen with β = 4e-7:

LT2L+STYLREL = LT2L + β(Ledit
STYLREL + Lscreen

STYLREL) (12)

We compare with Text2LIVE for local style transfer task,
quantitatively in Tab 2, and qualitatively in Fig 5 where we
observe that STYLREL exhibits better fine-grained under-
standing in interpreting target style instructions (compare
for prompts flower in desert style and woman in fire style



in Fig 5) and focusing on regions of interest (compare for
prompts boat in rainbow style and person in green crystal
style in Fig 5) than Text2Live.

Proposing a new baseline – Mask-CLIPStyler. Due to
the complexity of prompts and difficulty to learn localiza-
tions under constraints, Text2LIVE is bottlenecked by its
inaccurate opacity maps. In their current form, they employ
a U-Net architecture to obtain these maps, and from Fig 5
(Col. 2) we clearly observe they are not satisfactory which
affects the composition results in Eqn 9.
To address this and propose a stronger baseline for eval-
uating our approach, we extend CLIPStyler with an addi-
tional pipeline which utilizes the state-of-the art method
Grounding DINO [26] followed by SAM [21] (referred to
as g-SAM) to extract segmentation masks for the target re-
gions mentioned in the text prompt. We call this baseline
– Mask-CLIPStyler. In particular, this pipeline is divided
into three steps (i) Extract segmentation masks M from
g-SAM, (ii) input the segmentation mask and Iin to a U-
Net [38] based generator f (iii) optimize the stylized output
Imask-CS = f(Iin,M) using modified loss functions. Specif-
ically, we modify the CLIP-based directional loss as fol-
lows:

“boat in white
wool style”

“woman in colorful
glitters style”

“teapot in fire
style”

“flower in colorful
glitters style”

Content Image Segmentation
maskTarget Style text Mask-CLIPStyler

Mask-CLIPStyler
+ StylRel

Figure 6. Qualitative results of Mask-CLIPStyler and Mask-
CLIPStyler+STYLREL on local style transfer. With STYLREL,
the output stylized images reflect the style text descriptions faith-
fully in the local regions. Segmentation masks in Col 3 are ob-
tained using g-SAM. Best viewed in color and zoom.

∆T = CT (Ttar)− CT (Tin)

∆I = CI(Imask-CS ⊙M)− CI(Iin ⊙M)

Ldir = 1− ∆T ·∆I

|∆T ||∆I|

(13)

Setting CLIP Score (↑) SSIM (↑)
Text2Live 22.64 0.8363

Text2Live + STYLREL 22.65 0.8397
Mask-CLIPStyler 22.60 0.6470

Mask-CLIPStyler + STYLREL 22.62 0.6536

Table 2. Quantitative comparison with baselines on the task of
local style transfer. We notice the addition of STYLREL consis-
tently improves both Text2Live [3], and proposed baseline Mask-
CLIPStyler on the standard metrics.

where CT and CI denote the CLIP text and image encoders
respectively. The overall objective function for Mask-
CLIPStyler is then given as:

LMCS = λdLdir + λpLpatch + λcLcontent + λtvLtv (14)

Finally, we add STYLREL to Mask-CLIPStyler with β =
5e-5:

LMCS+STYLREL = LMCS + β
′
LSTYLREL (15)

We document the quantitative comparisons in Tab 2. In
Fig 6, a qualitative comparison with Mask-CLIPStyler re-
veals that STYLREL outperforms in generating realistic in-
terpretations of both target text and content image. Specifi-
cally, for prompts such as “flower in colorful glitters style”
and “woman in colorful glitters style”, STYLREL adeptly
captures the nuanced attributes of the target style “colorful
glitter,” rendering them onto the content image realistically.
This can be seen by the distinct colors of flower elements
(flower petals are glittery pink and pistil is yellow glitter)
and the nuanced application of glitter on the woman’s face,
as opposed to a less refined glitter application observed in
the other baseline.

5.4. Ablation and Analysis

In this section, we study the influence of components used
by our approach. We select CLIPStyler for these experi-
ments and divide this section into questions regarding our
choice of β, list of styles in Tstyle, question prompt in Tstyle
and deciding where to apply STYLREL– global v/s local
(patch-wise). Finally, we discuss some limitations of our
approach in the later part of this section.
On varying β in Tab 3b, we observe our performance first
increases on increasing β, and then subsequently decreases
for its higher values. We expect this to happen as assigning
considerably high weights to LSTYLREL will create an overall
imbalance for other loss functions used in Eqn 7.
To vary the choice of styles in Tstyle, we experiment with
three different style vocabularies of varied lengths and re-
port the results in Tab 3a. We observe that STYLREL is able
to improve over baseline CLIPStyler in all three cases, with
a slight variation of performance in each case. We attribute
this variation to the phenomenon of quantity v/s quality of
styles in each vocabulary, and look forward to it as an inter-



Setting CLIP Score (↑) SSIM (↑)
CS 23.82 0.3895
I 24.07 0.3913
II 24.18 0.3887
III 24.02 0.3909

(a)

Setting CLIP Score (↑) SSIM (↑)
β5e−5 24.01 0.3919
β1e−4 24.07 0.3913
β4e−4 23.45 0.3808
β1e−3 22.59 0.3687

(b)

Table 3. (a). Performance of our framework across a variation of
style sets {I, II, III}. (b). Performance of LSTYLREL across multiple
β parameters.

esting future direction. More details for these vocabularies
are attached in the appendix.

To vary the choice of question prompt in Tstyle, we choose
three different prompts each of which are –“is the style
<STYLE>?”, “is the image in style <STYLE>?”, and “is
it looking like <STYLE>?”. To effectively quantify this
comparison, we combine the SSIM score, CLIP score, and
PatchCLIP score into an overall score Os = 100 * SSIM *
(CLIP Score + PatchCLIP Score) / 2. We then report per-
cent improvement in overall score (Os) over the base CLIP-
Styler as ∆% in Fig 7, and observe that STYLREL con-
sistently improved over CLIPStyler across different prompt
choices. We acknowledge that different prompts improve
differently, however, developing methodologies to predict
the right prompt for STYLREL is left as part of our future
work.

Figure 7. Ablations. (a) Ablation study on different sets of ques-
tion prompts (I, II, III) used to create our style tensor S, (b) Ab-
lation on three variants of our proposed STYLREL loss- Local,
Global, and both. We observe a superior performance compared
to CS across different sets of prompts, as well as variations of the
STYLREL loss applied.

To analyze where to apply STYLREL, we consider three
possible configurations namely global, local, and both
(global + local). Global refers to applying STYLREL only
on the entire image i.e. keeping patch size equal to the size
of the image and number of patches M = 1. Local refers
to the Eqn 6, and both refer to incorporating both the losses
simultaneously. We present our results in Fig 7, and ob-
serve that the influence of local is significantly higher than
the global, even though applying both works better overall.
Thus, for simplicity, we use local in all our experiments.

Limitations. We found that our method depends on CLIP’s
capacity to encode question prompts (see Sec 4.1), and the
performance of the underlying baseline such as Text2LIVE.
In the case of the former, we experiment with two longer
length and twisted question prompts — 1 : “Would it be
easy for someone looking at this image to say it is in the
style of <STYLE>?”, 2 : “Is it easy for someone looking
at this image to infer that it is in the style of <STYLE>?”,
and report our results in Fig. 8a. It can be observed that
the performance of STYLREL gets affected and we attribute
this to the loss of semantics in CLIP’s text encodings.
For the latter, we sample images from Text2LIVE wherein it
severely distorts the output image, and intuitively found that
application of STYLREL leads to little or no improvement
in such cases (see Fig 8b).

Prompt 1 Prompt 2

(a).   Content Image StylRel (Ours) StylRel (Ours)

style text: ”Vintage”

(b).  Content Image

style text: ”boat in desert style”

Text2LIVE Text2LIVE + StylRel

Figure 8. Limitations. (a) CLIP text embeddings for longer and
twisted question prompts can lose semantics and affect the perfor-
mance of our approach. We experiment with two such prompts
(denoted Prompt 1 & 2), refer Sec 5.4-Limitations for their defi-
nition. (b) In cases where baseline (here Text2LIVE) fails consid-
erably, STYLREL applied on top offers little to no discriminable
correction.

6. Conclusion and Future Work
In this work, we present a novel strategy for enhancing text-
based style transfer by leveraging relationships between
various textual style descriptions with standard styles. We
propose a versatile framework, STYLREL, which seam-
lessly integrates into existing text-based style transfer tech-
niques, requiring only minimal alterations. Compared to
strong baseline approaches, the use of our proposed STYL-
REL shows significant improvements in both qualitative
outputs and quantitative performance metrics. We extend
STYLREL to facilitate fine-grained localized style transfer
with only text instructions. Going forward, our research
will focus on examining the inherent graphical relation-
ships within style spaces to offer an interpretable under-
standing of these interconnections. Additionally, we intend
to broaden the applicability of the relational loss concept to
both text domains and diffusion models.
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Alexandra Sasha Luccioni, François Yvon, Matthias Gallé,
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